Tag Archives: comportamiento

Comportamiento sexual de aves varía según estímulos que reciban

 
Facebooktwittergoogle_plusmail

comportamientoavesManizales, mar. 20 de 2014 – Agencia de Noticias UN – Análisis adelantados sobre el comportamiento sexual de las codornices evidenciaron que ante la suspensión de un estímulo, contrario a lo esperado, la conducta aumenta.

El estudio buscaba analizar el aprendizaje de conductas mediante ejercicios que asocian un estímulo–respuesta (tal como un humano comprende que con girar una llave se puede abrir la puerta), enfatizando en los efectos que se producen cuando los estímulos son suspendidos.

Para ello, Germán Gutiérrez, profesor de la Universidad Nacional de Colombia en Bogotá, trabajó con una especie japonesa de estas aves, dado que ofrecen un buen modelo para identificar cómo ocurren los mecanismos de aprendizaje; además, se reproducen constantemente y son fáciles de cuidar en un laboratorio.

El investigador representó a la codorniz hembra en un modelo abstracto en tela, el cual era mostrado al macho antes de su acostumbrado ritual para copular. De esta prueba se obtuvo como resultado que el macho aprendía a reconocer el objeto y empezaba a mostrar respuestas que solo aparecían ante la hembra real.

“Sin embargo, contrario a lo que podría pensarse, cuando se extingue el estímulo o deja de asociarse con la codorniz real, la conducta no desaparece sino que se incrementa, un fenómeno que resulta interesante porque describe una serie de comportamientos inesperados que aportan al estudio conductual en otras especies ”, indicó el docente del Departamento de Psicología de la U.N.

El profesor Gutiérrez agregó que la adquisición y extinción del estímulo puede ayudar a entender por qué fenómenos que aparentemente deberían tener el efecto contrario, tienden a incrementarse hacia el futuro.

“Por otra parte, también se observó que la conducta sexual de las codornices y otras especies de aves disminuye según la cantidad de luz en el ambiente, por tanto a menor exposición a la luz, se reduce la cantidad de testosterona en pocas semanas y en consecuencia baja la conducta reproductiva del animal”, precisó el experto.

Estos hallazgos contribuyen al estudio del comportamiento en otras especies, aunque también son un insumo para investigadores de otros campos, enfocados en el área del fetichismo y los procesos de aprendizaje en torno a la disminución de determinados comportamientos, sin necesidad de recurrir a castigos o medidas de fuerza, sino usando las estrategias de extinción.

Los procesos se adelantaron en el del Laboratorio de Aprendizaje y Comportamiento Animal de la sede Bogotá.

Créditos: UNAL-399-2014

“El Sol no es una amenaza para el clima de la Tierra”.

 
Facebooktwittergoogle_plusmail
7 de Enero del 2013
Algunos científicos niegan que el calentamiento global sea producido por las emisiones de CO2 y las actividades humanas, y lo atribuyen a que el Sol está cambiando de tal manera que afecta el clima terrestre.
Sin embargo, según el físico Hugh Hudson, uno de los estudiosos del Sol más importantes del mundo, –en entrevista con la Agencia de Noticias UN– en este gran debate sobre el clima, los “negadores del calentamiento global” no tienen razón, pues el astro rey no altera el comportamiento climático terrestre. “Lo que hace es proporcionarnos la energía que disfrutamos y es esencial para la vida”.
En cuanto a las erupciones solares que podrían esperarse para el pico máximo solar, que se dice será en el 2013, el científico afirma que lo que sí podría verse afectado son las comunicaciones satelitales y las misiones espaciales. En el anterior grupo de manchas solares, se presentaron “muchas erupciones medianas, pero ninguna gigante. Y esto nos hace pensar que este ciclo es diferente y que la variabilidad del Sol tiene propiedades que se extienden por más de once años”, dice.
En cuanto a las comunicaciones satelitales, Hudson comenta que “la vida de un satélite depende del dinero invertido, pues al diseñarlo lo pueden hacer muy seguro a las radiaciones o no tanto”. Y afirma que “existen muchos casos de satélites que han sido destruidos por la actividad solar”.
Con respecto a las misiones espaciales, el físico menciona que, por ejemplo, en el caso de un viaje a Marte, en el que los astronautas tardarían más o menos un año para llegar allí, podría haber “un riesgo serio de que durante ese tiempo haya una erupción y la salud de los astronautas se vea afectada”, pues “ellos no podrían sobrevivir a una emisión de este tipo”.
Los efectos de las partículas magnéticas solares pueden persistir varios días, según explica Hudson: “una erupción llena la heliósfera, o sea la cavidad que el Sol le hace al espacio sideral. Esta cavidad se llena de partículas que se pueden detectar durante algunos días después de la emisión”. Y agrega que “esta es una de las razones por las cuales los astronautas tendrían problemas en su viaje a Marte”.
De hecho, el mayor misterio que encierra el astro rey, para este científico, es la naturaleza de las erupciones solares, porque las radiaciones solares no son estables. “Se pueden hacer teorías sobre una estrella que pueden ser aparentemente satisfactorias. Sin embargo, no lo son para una esfera de gas caliente. El campo magnético tiene unas propiedades muy extrañas y una de esas es que acumula energía en la corona de una manera muy lenta y continua y, de pronto, hay una explosión. Por qué y cómo sucede aún no lo entendemos. Y algunas veces estas explosiones envían materia hacia el espacio”, expresa.
Al preguntarle por la estructura de la atmósfera solar y sus campos magnéticos, responde: “en su nivel más simple, la atmósfera del Sol es parecida a la de la Tierra. Hay gravedad, y esta la hala hacia el interior y, como consecuencia, forma capas estratificadas que se denominan fotósfera, cromósfera, región de transición y corona. El campo magnético es muy fuerte. En una mancha solar, es casi como la fuerza de un imán de nevera y se siente, pero el imán es pequeño, mientras que la mancha es más grande que Colombia. Se trata de una inmensa cantidad de energía que puede perturbar la atmósfera y reestructurarla. Una mancha solar es una estructura muy complicada”.
El estudio y las predicciones sobre el Sol
Así, la predictibilidad es un asunto científico y técnico muy importante, “por cuanto hay erupciones solares, eyecciones de masa coronal y perturbaciones que se propagan hacia la Tierra y causan cosas malas; por ejemplo, complicaciones de las comunicaciones mundiales, daños en los sistemas de distribución eléctrica y otros efectos en la ionósfera”.
El científico menciona que hay un gran interés en predecir este comportamiento. “Esta una de las mayores razones que nos estimulan a estudiar el Sol. Hasta cierto punto podemos hacer algunas predicciones, pero aún hay muchas cosas que no entendemos. Parte del problema es que su actividad comienza en su interior y se desplaza hacia el exterior, donde la podemos apreciar. Una vez en la superficie, de pronto, podemos entender eso que algunos llaman «surgimiento» del flujo solar, pero que aún no comprendemos del todo, pues la información sobre su interior es mucho más débil que la de su exterior”, dice.
Por ello, comenta, “hay varios satélites haciendo observaciones astronómicas, pero el RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) es el único que lo hace con rayos X intensos, es decir, rayos de 10 a 20 kilovoltios. Además, rota sobre su eje en línea directa hacia el Sol, lo cual es una configuración inusual para un satélite y nos otorga muchas ventajas. Sin embargo, ya tiene diez años y se está acabando, los satélites normalmente no duran tanto. Esperamos que siga funcionando a lo largo de este máximo solar, para poder seguir estudiando las erupciones”.
Retos actuales de la Astrofísica Solar
En cuanto a los desafíos científicos que existen en este campo, Hugh Hudson dice que el Sol está muy lejos y sus estructuras son muy complicadas. “No podemos hacer teorías si no las conocemos. Por eso, conseguir imágenes de alta calidad es clave”. Aunque esto se consigue de cierta manera desde el espacio, también se requieren instrumentos de alta resolución desde la superficie terrestre.
Explica que en Chile se encuentra el radiotelescopio ALMA, que comenzó a operar recientemente, y que hay otro telescopio inmenso que será instalado en Hawái (el ATST, Advanced Technology Solar Telescope), “el más grande en años para ver el Sol (tiene cuatro metros de diámetro). Y la razón para construirlo es conseguir la mejor resolución posible”.
Finalmente, el experto manifiesta que el astro está lejos, pero no tanto. “Por eso podemos colocar satélites en órbita a su alrededor. Ahora hay dos módulos lunares que están produciendo imágenes estereoscópicas para la Tierra. Son muy importantes porque nos dan la posibilidad de ver su estructura tridimensional como ningún otro instrumento astronómico. Pero esperamos poder verla también con otros satélites y otras longitudes de onda”.
Hugh Hudson
Observar el astro rey es más que una pasión para este físico. Examinar las erupciones solares, emocionarse –como Galileo– con la precisión de los datos que arrojan satélites como el RHESSI o el SDO y contribuir al descubrimiento de “nuevas pequeñas cosas” es parte de su trabajo.
Hugh Hudson se educó en la Universidad de Rice, en Houston (Texas), y luego en la Universidad de California, en Berkeley (UCB), y en la de San Diego (UCSD). Después de diez años en Japón, regresó brevemente a la UCB y ahora está en Glasgow (Escocia), pensando en retirarse. Actualmente, se considera un estudiante de las propiedades globales del Sol, a partir de las mediciones precisas que ahora se pueden efectuar.
En la actualidad, se encuentra trabajando con los nuevos datos del satélite SDO (Solar Dynamic Observatory), un instrumento nuevo que se ha usado poco (fue lanzado por la NASA en el año 2010). “Con estos datos pude detectar el cambio del efecto Doppler del satélite, una cosa realmente menor, pero muy gratificante para mí, porque me mostró qué tan precisos son. Fue uno de esos momentos emocionantes, como le pasó a Galileo, pues tuve la oportunidad de ver cómo se mueven los satélites”, expresa.
Créditos:http://www.agenciadenoticias.unal.edu.co/inicio.html
Las comunicaciones satelitales y las misiones espaciales sí pueden verse afectadas por las erupciones solares, pero el comportamiento climático de la Tierra no, según Hugh Hudson.

Las comunicaciones satelitales y las misiones espaciales sí pueden verse afectadas por las erupciones solares, pero el comportamiento climático de la Tierra no, según Hugh Hudson.

7 de Enero del 2013

Algunos científicos niegan que el calentamiento global sea producido por las emisiones de CO2 y las actividades humanas, y lo atribuyen a que el Sol está cambiando de tal manera que afecta el clima terrestre.

Sin embargo, según el físico Hugh Hudson, uno de los estudiosos del Sol más importantes del mundo, –en entrevista con la Agencia de Noticias UN– en este gran debate sobre el clima, los “negadores del calentamiento global” no tienen razón, pues el astro rey no altera el comportamiento climático terrestre. “Lo que hace es proporcionarnos la energía que disfrutamos y es esencial para la vida”.

En cuanto a las erupciones solares que podrían esperarse para el pico máximo solar, que se dice será en el 2013, el científico afirma que lo que sí podría verse afectado son las comunicaciones satelitales y las misiones espaciales. En el anterior grupo de manchas solares, se presentaron “muchas erupciones medianas, pero ninguna gigante. Y esto nos hace pensar que este ciclo es diferente y que la variabilidad del Sol tiene propiedades que se extienden por más de once años”, dice.

En cuanto a las comunicaciones satelitales, Hudson comenta que “la vida de un satélite depende del dinero invertido, pues al diseñarlo lo pueden hacer muy seguro a las radiaciones o no tanto”. Y afirma que “existen muchos casos de satélites que han sido destruidos por la actividad solar”.

Con respecto a las misiones espaciales, el físico menciona que, por ejemplo, en el caso de un viaje a Marte, en el que los astronautas tardarían más o menos un año para llegar allí, podría haber “un riesgo serio de que durante ese tiempo haya una erupción y la salud de los astronautas se vea afectada”, pues “ellos no podrían sobrevivir a una emisión de este tipo”.

Los efectos de las partículas magnéticas solares pueden persistir varios días, según explica Hudson: “una erupción llena la heliósfera, o sea la cavidad que el Sol le hace al espacio sideral. Esta cavidad se llena de partículas que se pueden detectar durante algunos días después de la emisión”. Y agrega que “esta es una de las razones por las cuales los astronautas tendrían problemas en su viaje a Marte”.

De hecho, el mayor misterio que encierra el astro rey, para este científico, es la naturaleza de las erupciones solares, porque las radiaciones solares no son estables. “Se pueden hacer teorías sobre una estrella que pueden ser aparentemente satisfactorias. Sin embargo, no lo son para una esfera de gas caliente. El campo magnético tiene unas propiedades muy extrañas y una de esas es que acumula energía en la corona de una manera muy lenta y continua y, de pronto, hay una explosión. Por qué y cómo sucede aún no lo entendemos. Y algunas veces estas explosiones envían materia hacia el espacio”, expresa.

Al preguntarle por la estructura de la atmósfera solar y sus campos magnéticos, responde: “en su nivel más simple, la atmósfera del Sol es parecida a la de la Tierra. Hay gravedad, y esta la hala hacia el interior y, como consecuencia, forma capas estratificadas que se denominan fotósfera, cromósfera, región de transición y corona. El campo magnético es muy fuerte. En una mancha solar, es casi como la fuerza de un imán de nevera y se siente, pero el imán es pequeño, mientras que la mancha es más grande que Colombia. Se trata de una inmensa cantidad de energía que puede perturbar la atmósfera y reestructurarla. Una mancha solar es una estructura muy complicada”.


El estudio y las predicciones sobre el Sol

Así, la predictibilidad es un asunto científico y técnico muy importante, “por cuanto hay erupciones solares, eyecciones de masa coronal y perturbaciones que se propagan hacia la Tierra y causan cosas malas; por ejemplo, complicaciones de las comunicaciones mundiales, daños en los sistemas de distribución eléctrica y otros efectos en la ionósfera”.

El científico menciona que hay un gran interés en predecir este comportamiento. “Esta una de las mayores razones que nos estimulan a estudiar el Sol. Hasta cierto punto podemos hacer algunas predicciones, pero aún hay muchas cosas que no entendemos. Parte del problema es que su actividad comienza en su interior y se desplaza hacia el exterior, donde la podemos apreciar. Una vez en la superficie, de pronto, podemos entender eso que algunos llaman «surgimiento» del flujo solar, pero que aún no comprendemos del todo, pues la información sobre su interior es mucho más débil que la de su exterior”, dice.

Por ello, comenta, “hay varios satélites haciendo observaciones astronómicas, pero el RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) es el único que lo hace con rayos X intensos, es decir, rayos de 10 a 20 kilovoltios. Además, rota sobre su eje en línea directa hacia el Sol, lo cual es una configuración inusual para un satélite y nos otorga muchas ventajas. Sin embargo, ya tiene diez años y se está acabando, los satélites normalmente no duran tanto. Esperamos que siga funcionando a lo largo de este máximo solar, para poder seguir estudiando las erupciones”.


Retos actuales de la Astrofísica Solar

En cuanto a los desafíos científicos que existen en este campo, Hugh Hudson dice que el Sol está muy lejos y sus estructuras son muy complicadas. “No podemos hacer teorías si no las conocemos. Por eso, conseguir imágenes de alta calidad es clave”. Aunque esto se consigue de cierta manera desde el espacio, también se requieren instrumentos de alta resolución desde la superficie terrestre.

Explica que en Chile se encuentra el radiotelescopio ALMA, que comenzó a operar recientemente, y que hay otro telescopio inmenso que será instalado en Hawái (el ATST, Advanced Technology Solar Telescope), “el más grande en años para ver el Sol (tiene cuatro metros de diámetro). Y la razón para construirlo es conseguir la mejor resolución posible”.

Finalmente, el experto manifiesta que el astro está lejos, pero no tanto. “Por eso podemos colocar satélites en órbita a su alrededor. Ahora hay dos módulos lunares que están produciendo imágenes estereoscópicas para la Tierra. Son muy importantes porque nos dan la posibilidad de ver su estructura tridimensional como ningún otro instrumento astronómico. Pero esperamos poder verla también con otros satélites y otras longitudes de onda”.


Hugh Hudson

Observar el astro rey es más que una pasión para este físico. Examinar las erupciones solares, emocionarse –como Galileo– con la precisión de los datos que arrojan satélites como el RHESSI o el SDO y contribuir al descubrimiento de “nuevas pequeñas cosas” es parte de su trabajo.

Hugh Hudson se educó en la Universidad de Rice, en Houston (Texas), y luego en la Universidad de California, en Berkeley (UCB), y en la de San Diego (UCSD). Después de diez años en Japón, regresó brevemente a la UCB y ahora está en Glasgow (Escocia), pensando en retirarse. Actualmente, se considera un estudiante de las propiedades globales del Sol, a partir de las mediciones precisas que ahora se pueden efectuar.

En la actualidad, se encuentra trabajando con los nuevos datos del satélite SDO (Solar Dynamic Observatory), un instrumento nuevo que se ha usado poco (fue lanzado por la NASA en el año 2010). “Con estos datos pude detectar el cambio del efecto Doppler del satélite, una cosa realmente menor, pero muy gratificante para mí, porque me mostró qué tan precisos son. Fue uno de esos momentos emocionantes, como le pasó a Galileo, pues tuve la oportunidad de ver cómo se mueven los satélites”, expresa.

Créditos:http://www.agenciadenoticias.unal.edu.co/inicio.html

Con matemáticas se estima desplazamiento de estructuras.

 
Facebooktwittergoogle_plusmail
Otra característica relevante de los algoritmos es su carácter multiobjetivo.

Otra característica relevante de los algoritmos es su carácter multiobjetivo.

14 de Diciembre del 2012
Empleando algoritmos genéticos, ingenieros de la UN modelaron matemáticamente el comportamiento de muros de ferrocemento ante eventos sísmicos para mejorar su diseño.
Para eso, trabajaron con muros experimentales a los cuales sometieron a cargas por ambos lados hasta deteriorarlos. El objetivo era lograr la simulación lo más exacta posible de este fenómeno para conocer el desempeño de estas estructuras y minimizar al máximo la posibilidad de error entre la operación matemática y la realidad.
Los investigadores de la UN en Manizales Gilberto Ortiz, Daniel Alveiro Bedoya y Diego Andrés Álvarez, seleccionaron el modelo Bouc-Wen, que permite describir y caracterizar con amplia versatilidad el comportamiento en el tiempo de una estructura cuando se presenta un sismo.
Con este método implementaron algoritmos genéticos multicriterio, para conocer con mayor precisión su desplazamiento cuando se la somete a una fuerza de este tipo.
“Estos algoritmos, tal como sucede en la genética humana, tienden a fortalecer la especie o a desarrollar la mezcla que dé la mejor respuesta. Con base en estos, pudimos calcular y ajustar los trece parámetros que requería el modelo para reproducir exactamente el desplazamiento de la estructura”, indica el profesor Diego Andrés Álvarez.
Otra característica relevante de los algoritmos utilizados es su carácter multiobjetivo, es decir, que la mejor opción se busca con base en unos criterios de optimización. En este caso se enfocó en dos aspectos: uno fue ajustar el desplazamiento predicho por el modelo al que se observó en el mundo real en los trabajos de laboratorio; el otro fue innovar, pues ningún otro autor había efectuado esta adecuación.
“Lo más novedoso del trabajo fue ajustar la energía empleada en el laboratorio con la que predecía el modelo Bouc-Wen. Esto nos permitió encontrar resultados muy similares en ambos casos, mucho mejores que los obtenidos con otros algoritmos”, manifiesta el profesor Álvarez.
En una investigación posterior con modelos de fragilidad, los ingenieros evaluarán la viabilidad de predecir el daño, es decir, de saber que, si el desplazamiento es de cierta magnitud, se puedan esperar grietas con determinadas características.
Esta investigación, que se publicará en el mes de enero en la prestigiosa revista Computers and Structures, se llevó a cabo en congruencia con otros proyectos de la sede en los que se experimenta con estructuras de ferrocemento, que son económicas y muestran buen desempeño sísmico, para construir viviendas de interés social.
Créditos: http://www.agenciadenoticias.unal.edu.co/inicio.html

14 de Diciembre del 2012

Empleando algoritmos genéticos, ingenieros de la UN modelaron matemáticamente el comportamiento de muros de ferrocemento ante eventos sísmicos para mejorar su diseño.

Para eso, trabajaron con muros experimentales a los cuales sometieron a cargas por ambos lados hasta deteriorarlos. El objetivo era lograr la simulación lo más exacta posible de este fenómeno para conocer el desempeño de estas estructuras y minimizar al máximo la posibilidad de error entre la operación matemática y la realidad.

Los investigadores de la UN en Manizales Gilberto Ortiz, Daniel Alveiro Bedoya y Diego Andrés Álvarez, seleccionaron el modelo Bouc-Wen, que permite describir y caracterizar con amplia versatilidad el comportamiento en el tiempo de una estructura cuando se presenta un sismo.

Con este método implementaron algoritmos genéticos multicriterio, para conocer con mayor precisión su desplazamiento cuando se la somete a una fuerza de este tipo.

“Estos algoritmos, tal como sucede en la genética humana, tienden a fortalecer la especie o a desarrollar la mezcla que dé la mejor respuesta. Con base en estos, pudimos calcular y ajustar los trece parámetros que requería el modelo para reproducir exactamente el desplazamiento de la estructura”, indica el profesor Diego Andrés Álvarez.

Otra característica relevante de los algoritmos utilizados es su carácter multiobjetivo, es decir, que la mejor opción se busca con base en unos criterios de optimización. En este caso se enfocó en dos aspectos: uno fue ajustar el desplazamiento predicho por el modelo al que se observó en el mundo real en los trabajos de laboratorio; el otro fue innovar, pues ningún otro autor había efectuado esta adecuación.

“Lo más novedoso del trabajo fue ajustar la energía empleada en el laboratorio con la que predecía el modelo Bouc-Wen. Esto nos permitió encontrar resultados muy similares en ambos casos, mucho mejores que los obtenidos con otros algoritmos”, manifiesta el profesor Álvarez.

En una investigación posterior con modelos de fragilidad, los ingenieros evaluarán la viabilidad de predecir el daño, es decir, de saber que, si el desplazamiento es de cierta magnitud, se puedan esperar grietas con determinadas características.

Esta investigación, que se publicará en el mes de enero en la prestigiosa revista Computers and Structures, se llevó a cabo en congruencia con otros proyectos de la sede en los que se experimenta con estructuras de ferrocemento, que son económicas y muestran buen desempeño sísmico, para construir viviendas de interés social.

Créditos: http://www.agenciadenoticias.unal.edu.co/inicio.html