Tag Archives: einstein

Einstein vs. una partícula más rápida que la luz

 
Facebooktwittergoogle_plusmail

Los astrofísicos son conscientes de que no se ha dicho la última palabra sobre la evolución o la verdadera composición del universo. Todo queda por descubrir. - AFP
Los astrofísicos son conscientes de que no se ha dicho la última palabra sobre la evolución o la verdadera composición del universo. Todo queda por descubrir. – AFP

26 de febrero de 2012

El profesor del Departamento de Física, Roberto Martínez, analiza la noticia de la partícula subatómica que podría echar al traste todas las ideas de Einstein. ¿Qué tan cierto sería?

Si un neutrino viajara más rápido que la luz y no se cuestionaran los errores experimentales, y si, además, otros lo corroboraran, podríamos dar una explicación al fenómeno sin necesidad de cambiar la Teoría de la Relatividad de Albert Einstein, que establece que nada es más veloz que la luz en el vacío. Por otra parte, si el universo tuviera dimensiones adicionales a las del espacio-tiempo, podríamos encontrar una explicación a este posible nuevo escenario.

Un neutrino es una partícula diminuta con masa casi nula, sin carga electromagnética, que interactúa débilmente con la materia. Es necesaria para entender la evolución de los astros luminosos, por ejemplo, cómo una estrella normal se puede convertir en una gigante roja o una enana blanca, o transformarse en un hoyo negro.

Entretanto, las dimensiones extras podrían existir. Son tan pequeñas que es difícil detectarlas con experimentos corrientes, por eso habría que diseñar ensayos muy sofisticados para ver sus efectos indirectos.

Un ejemplo cotidiano explica cómo sería la propagación de un neutrino en un espacio-tiempo con dimensiones extras. Imaginemos a una persona caminando por una superficie plana completamente rígida como el asfalto, y a otra por una superficie también plana, pero blanda y dúctil como la playa. Las dos superficies son bidimensionales, sin embargo, hay una diferencia en el tiempo requerido para avanzar una distancia.

En la playa, el pie trata de hundirse e interactúa con todos los defectos de la superficie. Precisamente, las dimensiones extras podrían afectar la velocidad de propagación de la luz o del neutrino porque las dimensiones típicas de estos objetos interactúan con las extras, generándose pequeñas e instantáneas desviaciones locales.

Para entender las dimensiones adicionales usemos la siguiente comparación hipotética: la distancia que separa a la Tierra de la estrella más brillante del firmamento, Sirio (a ocho años luz), y la que existe entre dos puntos en una hoja de papel (por ejemplo, un centímetro).

Supongamos que reducimos simultáneamente esas dos distancias, de tal forma que la que hay entre Sirio y la Tierra se disminuya a la longitud existente entre los dos puntos del papel, y que a la vez estos últimos reduzcan su distancia a dimensiones imperceptibles para el ojo humano, a una escala infinitamente diminuta; esas serían las dimensiones adicionales del cosmos, están ahí aunque no las veamos.

Estas ideas son descabelladas y complejas, pero se construyen para entender la dinámica del universo. Muchos se preguntarán, ¿para qué los científicos se inventan teorías cada vez más complicadas y difíciles de probar? Podríamos hacer paralelos con las comunidades más primitivas: primero aprendieron a contar (1, 2, 3…), pero se dieron cuenta de que necesitaban más números (–1/2, 1/3, 4/5, etc.). Luego, descubrieron los números complejos para construir los algoritmos requeridos en las finanzas.

De igual forma, las teorías científicas son construcciones cada vez más elaboradas para entender, por ejemplo, el origen del universo millones de años atrás, la formación de las galaxias y el origen de la materia, entre otros interrogantes.

Nuevos retos

Podemos pensar que al espacio le nacieron ‘verruguitas’ que no vemos –las dimensiones extras–, pero la luz sí. Esto supondría que la velocidad de la luz ya no sería igual en todas las direcciones como se pensaba, es decir, no sería isotrópica. En este sentido, la pregunta podría ser: ¿Una partícula como el neutrino puede propagarse más rápido que la luz sin cambiar la Teoría de la Relatividad de Einstein? La respuesta sería sí.

Que experimentos como el CERN (Organización Europea para la Investigación Nuclear) o el Laboratorio Gran Sasso reporten que una partícula se propaga más rápido que la luz evidenciarían anisotropía del espacio debido a la presencia de dimensiones extras; se podrían construir teorías sin cambiar para nada la Relatividad ni pensar que el universo está “chueco”. La anisotropía indica que una determinada propiedad se puede medir de diversas formas según su orientación.

Habría que tener en cuenta pequeñas correcciones, debido a que el orden de las nuevas dimensiones provocaría cambios apreciables en los cálculos sobre el tiempo que lleva la luz propagándose. Una consecuencia directa sería la estimación errada en cuanto al tamaño y la edad del universo. También estaríamos calculando mal la distancia de las estrellas más lejanas.

Estos modelos generan cambios importantes sobre el origen del todo. Por ejemplo, resultados recientes del satélite Hubble concluyen que nuestro universo está acelerado y no en contracción –como se esperaba de las observaciones viejas con telescopios interferidos por la atmósfera–, y que la cantidad de materia puede ser mucho mayor de lo pensado.
Créditos: agenciadenoticias.unal.edu.co
Solo se ha observado el 5% de la materia con que están hechas las galaxias; otro 15% no se ha visto, pero se ha inferido que existe la denominada materia oscura debido a los efectos gravitacionales que afectan la dinámica de las galaxias y las estrellas. Otro 75% se conoce como energía oscura y está asociada al hecho, recientemente descubierto, de que las estrellas más lejanas se alejan aceleradamente.

Estaríamos obligados a reinterpretar muchos de estos temas y, seguramente, también deberíamos hacerlo con la cosmología. Pero la vida cotidiana no va a cambiar, ni las teorías científicas existentes dejarán de ser ciertas.

Tiempo relativo

En el experimento llamado Super–Kamiokande, en Japón, se confirmó que cuando un neutrino entra en un tanque con 50.000 toneladas de agua pura, este viaja más rápido que la luz en ese medio. No obstante, la Teoría de la Relatividad no se viola.

Se cree, además, que esto quebrantaría el concepto de causalidad y habría eventos que ocurrirían antes que la acción que los causó. Debemos ser cuidadosos cuando hablamos del tiempo; existe uno que podemos llamar termodinámico y marca el devenir de los eventos, nunca va hacia atrás. Este es diferente al tiempo que asociamos a una partícula elemental. El primero, se genera como un efecto colectivo de un sistema termodinámico (todo lo que nos rodea); en cambio, el segundo hace referencia a un parámetro de una ecuación y no sirve para marcar el devenir.

Igualmente, cuando se mide el tiempo del cosmos y se estudian las etapas de su evolución, en lugar del tiempo se usa la temperatura o la energía promedio de las partículas del universo en ese instante. Como vemos, el concepto de tiempo se va diluyendo y hay muchas formas de medirlo o marcarlo. Así, al sistema termodinámico podemos llamarlo el tiempo universal, el cual marcha en la dirección en la que el universo se expande.

Créditos: agenciadenoticias.unal.edu.co

NUEVA FORMA NUMÉRICA DE ESTUDIO DEL ESPACIO ESTELAR

 
Facebooktwittergoogle_plusmail

Miguel Alcubierre Moya
Miguel Alcubierre Moya

• El físico Miguel Alcubierre convierte ecuaciones planteadas por Einstein en códigos computacionales que buscan utilizar modelos astronómicos reales
• Con esa herramienta explica el proceder de las ondas gravitacionales, con las que estudia colisiones de agujeros negros y el origen del Universo
• Por su trayectoria, el investigador del Instituto de Ciencias Nucleares de la UNAM recibirá la Medalla al Mérito en Ciencias y Artes de la Asamblea Legislativa del DF

Un conjunto de ecuaciones planteadas teóricamente hace casi un siglo por el físico Albert Einstein para explicar la gravedad, podrían resolverse con la utilización de supercomputadoras gracias a la relatividad numérica, una rama de la física que “traduce” las sentencias matemáticas a un lenguaje capaz de ser procesado por las máquinas.

El ejercicio permitirá a los físicos del siglo XXI abordar fenómenos reales de la naturaleza, como el comportamiento entre dos estrellas o una colisión de agujeros negros.

Experto en relatividad numérica, el doctor en Física Miguel Alcubierre Moya, investigador del Instituto de Ciencias Nucleares (ICN) de la UNAM, define a la Teoría de la Relatividad de Einstein como una teoría sobre la gravedad.

“La relatividad es la teoría de la gravitación, la teoría moderna que nos explica cómo funciona la fuerza de la gravedad, la atracción de los planetas, del Sol, de las estrellas, la formación de galaxias y el origen del Universo”, resumió.

El académico del Departamento de Gravitación y Teoría de Campos del ICN, explicó que para resolver esas ecuaciones desde la teoría se utilizan ejemplos ideales, como una sola estrella redonda y perfecta.

“Pero cuando usamos ejemplos reales, como dos estrellas y una galaxia, las ecuaciones son tan complicadas que no se pueden resolver a mano y necesitamos códigos numéricos y usar computadoras para resolverlas. Ese es mi trabajo”, comentó.

Para procesar las ecuaciones en computadoras, Alcubierre y sus colegas utilizan un lenguaje de programación de alto nivel, llamado Fortran, al que trasladan un código con el contenido de las ecuaciones para que la supercomputadora Kan Balam haga aproximaciones.

Alcubierre se ha dedicado a resolver ecuaciones de la relatividad general estudiando colisiones de agujeros negros. “He estudiado qué pasa cuando dos agujeros negros chocan, cómo se comportan y si emiten ondas gravitacionales”, señaló.

En busca de ondas gravitacionales

Así como las ondas electromagnéticas se relacionan con la electricidad y emiten ondas de radio, rayos X y rayos gamma, existen otro tipo de ondas, las gravitacionales, asociadas a la gravedad.

“Se producen en el campo de gravedad que fluctúa, y en principio se podrían detectar desde la Tierra. Mi trabajo ha sido predecir qué señales de este tipo podríamos esperar cuando dos agujeros negros chocan”, detalló Alcubierre.

Hasta ahora, el investigador de la UNAM ha realizado predicciones teóricas, sin embargo, los agujeros negros ni las ondas gravitaciones que estudia se han visto.

“Las ondas gravitaciones son muy débiles, y no hemos tenido la tecnología suficientemente avanzada para detectarlas”, comentó.

Pero esto será por poco tiempo, pues desde hace dos años existen en Estados Unidos, Italia y Alemania cuatro observatorios dedicados a buscar ondas gravitacionales. “No han visto nada todavía nada, pero es porque aún no han logrado la sensitividad adecuada. Si todo sale bien, en el transcurso de la próxima década, entre el 2010 y el 2020 deberían verse por primera vez ondas gravitaciones en estos observatorios”, señaló.

Cuando estas ondas se capten, Alcubierre y otros físicos teóricos podrán comparar su trabajo con las observaciones experimentales.

“Las ondas gravitacionales casi no interaccionan con la materia. Con ellas podríamos ver las oscilaciones del centro de una estrella, porque todo lo que hay afuera es invisible en ese espectro. Podríamos ver cuando una estrella se muere, cuando se convierte en hoyo negro, cómo colapsa el centro, o ver mucho más claro y más lejos el origen del Universo”, señaló.

La detección de ondas gravitacionales se realiza con unos aparatos llamados interferómetros, muy distintos a los telescopios, y formados por dos grandes tubos de hasta cuatro kilómetros de largo que contienen un haz láser al vacío.

“Los interferómetros envían un rayo láser, que atraviesa un semiespejo, que deja pasar la mitad de la luz y la otra mitad la refleja. Ese láser se divide en dos, y envía los rayos a espejos distintos y muy lejanos, en donde la luz rebota, regresa y se combina otra vez. Es un equipo parecido a una L, que en el punto de unión tiene el espejo inicial y cada brazo es la ruta de cada láser”.

En los interferómetros se miden diferencias en la distancia de ambos brazos del equipo, usando un patrón de interferencia, que ocurre cuando una onda gravitacional, cuando pasa por un objeto, lo comprime y lo alarga un poquito, de diferente forma en las direcciones opuestas.

“Cuando pasa la onda gravitacional, uno de los brazos del interferómetro hace al objeto un poquito más corto, y el otro, un poquito más largo, y podemos medir la diferencia”.

Medalla al Mérito

Por su trayectoria científica, Miguel Alcubierre recibirá la Medalla al Mérito en Ciencias y Artes que otorga la Asamblea Legislativa del DF.

El investigador del ICN consideró importante el impulso que el gobierno del DF ha dado a la ciencia. “Creo que es fundamental que al gobierno le interese la ciencia, le preocupe, que invierta en ciencia y se de cuenta que la ciencia no es un lujo, es algo que necesitamos si queremos dejar de ser subdesarrollados”, finalizó.

Créditos: Boletín UNAM-DGCS-160 – dgcs.unam.mx

Sabersinfin.com